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Which cues do listeners use? Discovering networks of phonetic cues 
for speech sound categorization using a graph theoretic approach 
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Acoustic data:

• 23 acoustic cue measurements 
across eight fricatives (/f,v,θ,ð,s,z,∫,ʒ /) 

• Created bins spanning range of 
acoustic values for each cue

• Code assigned to each bin, creating 
230 possible cue-value combinations

Graph structure:

• Nodes: 20 listeners and 230 codes

• Edges: weighted by inverse 
likelihood of response probability for 
a specific fricative given the code

Sub-graph search procedure:

• Subgraphs calculated in SageMath
• After first solution found, identified 

cue-value nodes removed, and 
algorithm run again; repeated until 
no remaining cue-values form a 
graph connecting all listeners

[1] Toscano, J.C., & Allen, J.B. (2014). Across and within consonant errors for 
isolated syllables in noise. J Speech Lang Hear Res, 57, 2293-2307.
[2] Toscano, J.C., & McMurray, B. (2010). Cue integration with categories: 
Weighting acoustic cues in speech using unsupervised learning and 
distributional statistics. Cog Sci, 34, 434-464.
[3] McMurray, B., & Jongman, A. (2011). What information is necessary for 
speech categorization? Harnessing variability in the speech signal by 
integrating cues computed relative to expectations. Psycol Rev, 118, 219-246.
[4] Sadeghi, A., & Fröhlich, H. (2013). Steiner tree methods for optimal sub-
network identification: an empirical study. BMC Bioinformatics, 14.
[5] Jongman, A., Wayland, R., & Wong, S. (2000). Acoustic characteristics of 
English fricatives. J Acoust Soc Am, 108, 1252-1263.

• 107 unique cues connected all listeners

• Many cues are relevant in sound 
identification—supports massive cue-
integration as an model of human 
speech perception

• Next step: Develop a model that mimics 
uses these cues to classify new sounds; 
measure cues, group into bins, map onto 
points in 107-dimensional space, and 
compute distance to each phoneme 
based on Steiner Tree solutions

METHOD

REFERENCES

Problem:

• Human speech is highly variable, yet 
listeners have little difficulty 
recognizing specific phonemes [1]

• Cue-integration models have been 
proposed as a solution [2,3] but they 
require assumptions about what the 
relevant cues are (based on phonetic 
measures of hypothesized cues)

• Need methods to isolate cues that 
are used consistently across large 
groups of listeners

Proposed solution:

• Use methods from graph theory to 
understand listener classification

• Steiner Tree algorithm used to 
identify subgraphs that minimize 
edge weights while connecting 
relevant nodes [4]

• Acoustic measurements and fricative 
classification data used to evaluate 
model [3,5]
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Representative Steiner Tree solutions Phoneme identification probabilities for cues 
discovered by algorithm

2-digit nodes: Listeners; 3-digit nodes: Cues

Iteration 
1

/f/ Steiner Trees

• 277: M3trans, bin 7
• 279: M3trans, bin 9
• 294: M4trans, bin 4
• 296: M4trans, bin6 
• 297: M4trans, bin 7
• 300: maxpf, bin 1

Iteration 
2

/∫/ Steiner Tree /ð/ Steiner Tree

Iteration 1 Iteration 1

Iteration 
3

210: lowF, 
bin 1

100: dur_f, bin 1
121: F1, bin 10
180: F5, bin 1
201: F5ampV, bin 10
220: M1, bin 1
248: M2, bin 8
262: M3, bin 2
291: M4trans, bin10

Phoneme identification probability by cue-value (all cues in dataset) DISCUSSION

Steiner Tree structures:

• Some phonemes are 
highly robust, with multiple 
cues that connect all 
listeners on a single run 
(e.g., /∫/)

• Other phonemes have no 
single cue used by all 
listeners, resulting in 
complex graphs (e.g., /ð/)

Model accuracy:

• Many cues correspond to 
1-2 unique phonemes, 
suggesting that they are 
robust cues

• Some cues provide 
information about specific 
phonological features, but 
not necessary unique 
phonemes (e.g., F5 
amplitude, bin 9: voicing)

dur_f F0 F1 F2 F3 F3ampF F3ampV F4 F5 F5ampF F5ampV lowF M1 M1trans M2 M2trans M3 M3trans M4 M4trans maxpf rms_f rms_v

●●●●●● ●
●●

●●
●●●

●

●
●

●●
●●

●

● ●●

●

●●
●
●
●

●

●

●

●

●

●●●
●●●

●

●●

●

●
●●●● ●●

●

●
●●

●●● ●●

●

●
●●●● ●●

●

●●●●●●●● ●

●●●●●●
●

● ●

●●●●●●
●
●

●●

●●●●●
●
●

●

●

●

●●●●
●●●

● ●

●●●●●●●● ●

●●●●●●●● ●

●●
●●●●

●● ●

●●●●●●●
●●

●●●●
●●

●
●

●●●
●●●

● ●

●
●●●●●● ●

●●●●
●●

●

●●

●

●●●
●
●●

● ●

●●●
●
●●

●
●

●●

●

●●●● ●

●

●●●●●●●●●●

●

●
●●●●●●

●●

●
●●●

●●●●●●

●●●
●●

●●
●●●

●●
●
●●●

●●●

●●

●
●
●●

●●●
●
●●

●

●●●
●●●

●

●●●

●

●●●
●●

●

●
●●

●

●
●

●●
●●●●●●●●

●●

●●●
●●●●

●

●

●●●●
●●

●●●

●

●●

●
●●●●

●●
●●●

●●
●●●●●

●
●

●●

●●

●●
●
●●

●●●

●●●●●
●
●
●●

●●

●

●

●
●●●●

●
●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●

●●●
●
●
●●●

●●

●●●●●
●
●●

●
●●●

●

●
●●●●●●●●

●●
●●

●●
●●●●

●

●●●●
●●●

●●●

●●●●●●
●
●

●
●●

●

●

●●●●●●●●●
●

●●
●

●●●●●●●

●●●●
●●●

●
●
●

●●●●●
●●

●
●
●

●●
●
●●●●

●●●

●
●
●●●

●●●●

●
●
●

●●●

●
●●●●●●

●

●●●
●●

●●
●
●●●

●●●●●●●
●●●

●
●
●●

●●●●●●

●
●●●●●●●

●
●●

●
●
●

●●●●●●●

●

●
●●●

●●●
●
●●

●

●

●

●
●
●●●●●

●●
●●●●●●

●●

●

●

●●

●●●●
●●

●
●●

●●●●
●●●● ●●

●
●●●●●●

● ●

●
●●●●●

●
●

●●

●

●

●
●●●●●● ●

●●●●
●●●

● ●

●
●
●●●

●
●● ●

●●
●●●●

●

●

●

●

●
●

●●●
●●● ●

●
●

●●●●●●●●●●

●●
●●

●
●●●●●

●●●
●
●●●●

●●

●
●●●

●●●
●●●

●
●●●●

●●●●●

●
●●●

●●●●●●

●

●●●●
●
●●●

●

●●

● ●

●●●●
●
●●

●●

●
●●

●●

●●●●●●●●●●●

●
●●●

●●●●
●
●

●●●●●
●
●●●

●●

●
●●●

●●●●●●

●●●
●
●●●●

●●

●

●●
●●●●●●

●

●
●●●

●●●
●●

●

●●
●●●

●●●
●

●●

● ●●●●
●●●

●

●

●●
●
●●●

●

● ●●
●●

●
●●

●

●
●●

●
●
●●

●

●
●

●
●
●
●●●

●

● ●●●
●

●
●
●

● ●●●●
●
●●●●

● ●●●●●

●
●●

●

●

●●
●●●●●●●

●

●●●●●
●●●●

●

●●●●●●
●●

●

●●

●●●

●●
●

●●●●

●●

●●●●●
●●

●●
●

●

●

●

●●●●●●
●

●

●

●

●●●●●●
●●●

●●

●●

●●●
●
●●●●

●●●

●●●●●●●●●●

●

●●
●●●●●●●

●
●
●
●●

●

●
●
●●

●
●●

●
●●

●●●●

●●●
●●●●●●●

●●●●●●●●
●●

●●●●●
●

●
●●●●

●
●●

●●●
●●

●

●●●●

●●

●

●●●●●
●●

●
●●

●

●●●
●
●
●

●●●●

●
●

●●
●●●●●●

●

●●
●●

●
●●●●●

●●
●●●●●●●●

●●●●
●
●

●●

●●●
●●

●●●

●●●●●●●

●●●

●●
●
●
●
●
●
●●●

●●●●●● ●

●
●●●●● ●

●●
●●●●

●

●●●
●●

●
●●

●
●●●●●

●

●●●
●●

●

●

●

●
●
●●●

● ●

●
●
●●●●

●●

●●●●●●●●
●
●●

●●
●
●●

●●●●●

●●●●
●●●

●●●

●●●●●
●

●●
●

●

●●
●

●●●
●●

●●●●●

●

●
●
●●

●
●
●●

●●
●

●
●
●●●●

●●●●

●
●

●●●●●
●●●

●

●●

●●

●●●●●●●●●●

●●●
●

●
●

●●●

●

●●●

●
●●●●●●●●●

●●
●●

●●●●●●

●●●
●●

●

●●●

●●
●

●

●●●●●
●●●●●

●

●

●●●●●●●●

●

●

●
●
●

●●●●●●●

●●●●
●
●●

●
●

●●●
●

●●● ●●

●
●●

●

●

●

● ●
●

●

●
●●●●●● ●●

●
●●●●

●●
●●

●
●
●●

●

●●
●
●

●

●
●●●

●●

●

●

●●

●

●

●
●●●●

●

● ●●

●●●● ●●● ●●

●

●

●
● ●●

●

●●●
● ●●

●
●●● ●●● ●

●
●●● ●●● ●

●

●
●
● ●●

●

●

●
●

●●
●● ●●● ●

●
●●● ●●● ●

●
●●● ●●● ●

●●●●●●
●●●●

●

●●●●●
●●

●●

●

●●●
●
●●

●●●●

●

●●●

●
●●●●●

●●●

●●●●●●
●●●

●
●

●

●

●●
●●●

●●
●

●●●●

●

●●●●
●

●

●

●
●●

●
●
●●●●

●
●●

●●●
●●●

●●●●

●●
●

●

●●●●●●

●●●
●
●●●

●
●
●

●●●●
●●

●
●
●

●

●

●●
●
●
●●●●●●

●●

●●●
●●●

●●●●

●●●●●
●●

●
●
●●●

●●●●
●●

●

●
●

●●
●

●●●●●
●●●●

●

●●
●●●●●●●●

●

●
●●●●●

●

●●

●

●

●●●●●
●
●
●
●

●

●●
●●●

●
●
●●●

●
●●●●●●●

●

●●

●●●
●●●

●●
●●●

●●
●●●

●●
●
●
●

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.75

D
H

F
S

SH
TH

V
Z

ZH

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

Cue−value (bin)

R
es

po
ns

e 
pr

ob
ab

ilit
y

5 10 15 20 25
Steiner Tree iteration


